1. مهمان گرامی، جهت ارسال پست، دانلود و سایر امکانات ویژه کاربران عضو، ثبت نام کنید.
    بستن اطلاعیه

مباحث و مقالات مهم زیر مجموعه متالوژی صنعتی

شروع موضوع توسط Mr Perfect ‏6/8/15 در انجمن سایر رشته ها

  1. کاربر فوق حرفه ای

    تاریخ عضویت:
    ‏23/6/15
    ارسال ها:
    4,491
    تشکر شده:
    6,069
    امتیاز دستاورد:
    113
    جنسیت:
    مرد
    حرفه:
    Engineering Management
    فصل اول فرآیندهای جوشکاری مقاومتی

    1-1- مقدمه
    1-2- جوشکاری مقاومتی نقطه ای
    1-3- جوشکاری مقاومتی نواری
    1-4- جوشکاری زائده ای
    1-5- جوشکاری فرکانس بالا
    1-6- جوشکاری جرقه ای
    1-7- جوشکاری سر به سر
    1-8- جوشکاری ضربتی
    1-9- لحیم کاری سخت و نرم مقاومتی


    فصل دوم عوامل مؤثر درجوشکاری مقاومتی

    2-1- مقاومت الکتریکی
    2-2- جریان جوشکاری
    2-3- زمان جوشکاری
    2-4- نیروی جوشکاری
    2-5- الکترودها
    2-5-1- سرد کردن الکترودها
    2-6- اثر شرایط سطحی
    2-7- اثر ترکیب شیمیایی فلز
    2-8- پراکندگی حرارت
    2-9- تعادل حرارتی
    2-10 طراحی اتصال





    فصل سوم جوشکاری مقاومتی فلزات و آلیاژهای مختلف

    4-1- جوش پذیری فلزات مختلف
    4-1-1- فولادهای کم کربن
    4-1-2- فولادهای سختی پذیر
    4-1-3- فولادهای زنگ نزن
    4-1-4- فولادهای پوشش دار
    4-1-5- آلومینیم و آلیاژهای آن
    4-1-6- فلزات و آلیاژهای غیرمتشابه
    4-2- شرایط جوشکاری برخی فلزات و آلیاژها
    4-2-1- جوشکاری مقاومتی فولادهای کم کربن
    4-2-2- جوشکاری مقاومتی فولادهای کم کربن متوسط و کم آلیاژ
    4-2-3- جوشکاری مقاومتی فولادهای زنگ نزن
    4-2-4- جوشکاری مقاومتی فولادهای پوشش دار
    4-2-5- جوشکاری مقاومتی آلومینیم و آلیاژهای آن


    فصل چهارم کیفیت و آزمایشهای جوشکاری مقاومتی


    5-1- کنترل کیفی جوش مقاومتی
    5-2- آزمایشهای جوش مقاومتی
    5-2-1- تایید دستگاه جوشکاری مقاومتی
    5-2-2- تایید فرآیند جوشکاری مقاومتی نقطه ای و زائده ای
    5-2-3- تایید فرآیند جوشکاری مقاومتی نواری
    5-2-4- متغیرهای اثر گذار بر تایید فرآیند جوشکاری مقاومتی
    5-2-5- تایید اپراتور جوشکاری مقاومتی
    5-3- کنترل کیفی الکترودها
    5-4- خطرات جوشکاری مقاومتی
     
  2. کاربر فوق حرفه ای

    تاریخ عضویت:
    ‏23/6/15
    ارسال ها:
    4,491
    تشکر شده:
    6,069
    امتیاز دستاورد:
    113
    جنسیت:
    مرد
    حرفه:
    Engineering Management
    فولاد هاي مقاوم حرارتي
    امروزه فولادها در شرایط متغیر و گسترده ای ؛ شامل محیط هایی با دمای بالا و خورنده تحت شرایط تنش استاتیكی و دینامیكی بكار می روند. از قبیل دریچه های موتور هواپیما ، حامل های كوره ، رتورت ها ، واحدهای كراكینگ نفت و توربین های گازی . سه مشخصه برای فلزاتی كه در دمای بالا به كار می روند ؛ مورد نیاز است :

    1- مقاومت به اكسیداسیون و پوسته شدن

    2- حفظ استحكام در دمای كاری

    3- پایداری ساختار ؛ با توجه به رسوب كاربیدها ، كروی شدن ، كاربیدهای سیگما، تردی بازپخت

    دیگر ویژگی ها نیز ممكن است در كاربرد مهم باشند ؛ همچون مقاومت ویژه و ضریب حرارتی برای اهداف الكتریكی ، ضریب انبساط برای واحدهای ساختمانی و مقاومت به نفوذ در اثر پدیده سوختن در بعضی كاربردهای كوره ای . در مورد فولادهای توربین های گازی مشخصات دیگری نیز مطرح می شود ، ظرفیت میرایی داخلی و استحكام خستگی ، حساسیت به فاق و استحكام ضربه ای ( سرد و گرم ) ، مشخصه جوشكاری و ماشینكاری ، بویژه در رتورهای بزرگ كه باید با حداقل مقاطع جوشكاری شده ساخته شوند .

    پوسته اكسیدی كه بر روی آهن شكل می گیرد متخلخل بوده و چسبنده نیست، اما این پوسته در اثر اضافه كردن عناصر ویژه ای به فولاد ، چسبنده و محافظ می شود . این عناصر كرم ، سیلیسیم و آلومینیوم هستند و آنها بوسیله میل تركیبی زیاد با اكسیژن توصیف می شوند ؛ اما واكنش بوسطه شكل گیری فیلم اكسیدی خنثی به سرعت متوقف می شود. مقاومت به اكسیداسیون فولاد نرم بوسیله شكل گیری آلیاژ آهن - آلومینیوم در سطح ، به مقدار زیادی بهبود می یابد. این عمل به وسیله حرارت دادن در 0C 1000 و تماس با پودر آلومینیوم (calorising ) یا اسپری حرارتی انجام می شود.

    بهبود مقاومت خزشی نیز بوسیله روش های زیر بدست می آید :

    - بالا بردن دمای نرم شدن بوسیله انحلال عناصر آلیاژی

    - استفاده معقول از رسوب سختی در دمای كاری ، بدون پدیده فراپیری . سختی فاز ثانویه شدیدا وابسته به درجه و یكنواختی ، پراكندگی بدست آمده است و ضریب خزش وابسته به دامنه فاصله اجزا است .

    - كنترل درجه كارسختی در بازه دمایی مناسب كه اغلب اندازه خزشی اولیه را كاهش می دهد.

    - تغییرات در پروسه تولید ، اكسیژن زدایی و ذرات درون مرزهای كریستالی نیز می توانند روی خواص خزشی تاثیر گذار باشند.

    - ذوب در خلا مزایایی دارد كه در روش های معمول نمی توان به آنها دست یافت .

    خواص مكانیكی نیز بوسیله اضافه كردن عناصر گوناگون بهبود بخشیده می شود ؛ كبالت ، تنگستن و مولیبدن باعث استقامت فولاد در برابر عمل تمپر كردن می شود. فولادهای آستنیتی آلیاژی هیچ تغییری ندارندو بنابراین بوسیله سرد كردن در هوا سخت نمی شوند . اما مقاومت به سایش آنها خوب نیست . مقدار كافی از عناصر آلیاژی همچون سیلسیم و كرم خط Ac را بالا می برد. فولاد با درصد بالای نیكل نباید در دمای بالا در تماس با دی اكسید گوگرد و یا دیگر تركیبات گوگردی قرار گیرد ؛ چون فیلم های كریستالی سولفید نیكل شكل می گیرد.

    در فولادهایی با كرم بالا كاربیدها به هم پیوسته و بزرگ می شوند، كه این منجر به كم كردن مسدود شدن رشد دانه های فریت در دمای بالای 0C 700 می شود. رشد بیش از اندازه دانه ها باعث كم شدن تافنس می شود. همچنین رشد دانه در بالای 0C 1000 در فولاد های آستنیتی اتفاق می افتد، اما هیچ مشكلی بوجود نمی آید . چون آنها حتی در شرایط دانه های درشت چقرمه و داكتیل باقی می مانند. هنگام گرم كردن در بازه 0C 500- 900 فولادهای آستنیته ، كاربیدها در طول مرزهای آستنیت رسوب نمی كنند و بعلت اینكه ترك های درون بلوری احتمالا افزایش می یابند اگر فولاد تحت تنش پیوسته در شرایط كششی در این رنج دمایی قرار گیرد. فولادهای فرتیك و آستنیتیك در تركیب ویژهای بوسیله شكل گیری فاز سیگما ترد می شوند.
     
  3. کاربر فوق حرفه ای

    تاریخ عضویت:
    ‏23/6/15
    ارسال ها:
    4,491
    تشکر شده:
    6,069
    امتیاز دستاورد:
    113
    جنسیت:
    مرد
    حرفه:
    Engineering Management
    اندازه گيري ضخامت توسط امواج ماوراء صوت
    ضخامت سنج های ماوراء صوت ( Ultrasonic ) برای اندازه گیری ضخامت مواد از یك سمت آنها ، استفاده می شوند. اولین ضخامت سنج تجاری ، از اصول كاری ردیاب های صوتی ( Sonar ) پیروی می كرد ، كه در سال 1940 معرفی شد . وسیله های كوچك قابل حمل كه تنوع در كاربرد داشتند از 1970 متداول شدند. اخیرا پیشرفت در تكنولوژی میكروپروسسورها منجر به مرحله جدیدی از عملكرد پیچیده و كاربرد آسان این وسیله ها شده است. كار تمامی سنجه های ماوراء صوت بر پایه اندازه گیری بازه زمانی عبور پالس های فركانس صوتی از میان ماده مورد آزمایش است . فركانس یا گام این پالس های صوتی فراتر از حد شنوایی انسان است ، به طور كلی یك تا بیست میلیون سیكل در ثانیه ، در مقابل برای گوش انسان حد ، بیست هزار است . این امواج فركانس بالا توسط وسیله ای تولید و دریافت می شوند كه مبدل ماوراء صوت نامیده می شود ؛ كه انرژی الكتریكی را به لرزش های مكانیكی تبدیل می كند و بلعكس .

    امواج ماوراء صوت بكار رفته در آزمایشات صنعتی به خوبی نمی توانند از میان هوا عبور كنند ؛ به همین دلیل از یك جفت واسط مثل پروپیلن گلیكول ؛ گلیسرین ، آب یا نفت استفاده می شود كه اغلب بین مبدل و قطعه قرار می گیرد. بیشتر سنجه های ماوراء صوت از روش " ضربه - انعكاس " برای اندازه گیری استفاده می كنند . امواج صوتی تولید شده توسط مبدل ، وارد قطعه شده و از بخش دیگر منعكس می شوند و به مبدل بازمی گردند . سنجه ، بازه زمانی بین پالس مرجع یا اولیه را با انعكاس آن با دقت اندازه گیری می كند. به طور نمونه این بازه زمانی تنها یك میلیونیم ثانیه است. اگر سنجه با سرعت صوت در آن نمونه برنامه ریزی شده باشد ، می توان ضخامت را بوسیله روابط ساده ریاضی از روی این بازه زمانی محاسبه كرد.

    t = VT/2

    ضخامت قطعه = t

    سرعت صوت در آن ماده = V

    زمان رفت و برگشت اندازه گیری شده = T

    نكته مهم این است كه سرعت صوت در ماده مورد آزمایش یك بخش ضروری از این محاسبه است .در مواد متفاوت سرعت انتقال صوت نیز متفاوت است ، و سرعت صوت به طور قابل توجهی با دما تغییر خواهد كرد . بنابر این ضروری است كه ابزار ماوراء صوت با توجه به سرعت صوت در ماده مورد آزمایش كالیبره شود و دقت اندازه گیری وابسته به این كالیبراسیون است .

    حقیقتا هر ماده مهندسی را می توان بدین وسیله اندازه گیری كرد . ضخامت سنج ماوراء صوت را می توان طوری تنظیم كرد كه بتوان فلزات ، پلاستیك ، سرامیك ها ، كامپوزیت ها ، اپوكسی ها و شیشه را اندازه گیری كند. همچنین نمونه های بیولوژیك و مایع را نیز میتوان اندازه گیری كرد . موادی كه برای سنجه های متداول ، مناسب نیستند شامل چوب ، كاغذ ، بتن و فوم است . اندازه گیری آنلاین یا همزمان پلاستیك های اكسترود شده یا فلزات نورد شده ، همچنین اندازه گیری لایه ها یا پوشش در مواد چند لایه نیز ممكن است.

    یك ضخامت سنج ماوراء صوت عموما شامل یك مدار گیرنده و فرستنده ، كنترل كننده و زمان سنج منطقی ، مدار محاسباتی ، مدار نمایش گر و یك تامین كننده نیرو است. پالسر، تحت كنترل یك میكروپروسسور، یك پالس محرك را به مبدل می فرستد . پالس ماوراء صوت بوسیله مبدل كه به نمونه تست متصل شده ، تولید می شود. انعكاس ها از انتها یا داخل سطح نمونه بوسیله مبدل دریافت و به سیگنال های الكتریكی تبدیل می شوند . و یك آمپلیفایر دریافت كننده را تغذیه می كنند برای آنالیز كردن. میكرو پروسسور كنترل كننده و مدارهای زمان سنج منطقی پالس را منطبق كرده و و سیگنال های انعكاسی مناسب را برای اندازه گیری بازه زمانی انتخاب می كنند . وقتی كه انعكاس ها دریافت می شوند ، مدار زمان سنجی ، یك بازه برابر با رفت و برگشت پالس صوتی در نمونه تست را بدقت اندازه خواهد گرفت . اغلب این پروسه چندین بار تكرار شده تا یك مقدار متوسط و پایدار بدست آید.

    سپس میكروپروسسور این بازه زمانی را همراه با سرعت صوت و داده های ذخیره شده در حافظه دستگاه بكار می برد تا ضخامت را اندازه گیری كند. این ضخامت سپس نمایش داده شده و به طور متناوب آپدیت می شود . ضخامت خوانده شده همچنین ممكن است در حافظه بیرونی ذخیره شود یا به پرینتر انتقال پیدا كند . اغلب ضخامت سنج های ماوراء صوت یكی از چهار نوع زیر هستند : مبدل - تماسی ، خط تاخیری ؛ شناور و دوجزئی ؛ كه هركدام مزایا و معایب خود را دارند .

    مبل تماسی :

    ضخامت سنج هایی كه از مبدل با تماس مستقیم استفاده می كنند به طور كلی در اجرا ساده هستند و به طور گسترده ای در اندازه گیری های صنعتی بكار می روند .بازه های زمانی عبارت اند از پالس های القایی اولیه تا اولین انعكاس منهای فاكتور تصحیح كننده ای كه حساب ضخامت از سطح ابزار مبدل را دارد و لایه كوپل شده ، همچنین تاخیر الكتریكی در ابزار سنجش . به طور ضمنی مبدل تماسی بكار گرفته می شود در تماس مستقیم با قطعه مورد تست .مبدل های تماسی برای كاربرد های سنجش بجز موارد زیر توصیه می شوند .

    مبدل خط تاخیری:

    مبدل های خط تاخیری از یك سیلندر پلاستیك ، اپوكسی یا سیلیكا جوش خورده تشكیل شده اند و به عنوان خط تاخیری بین جزء مبدل و قطعه كار شناخته می شوند .یك دلیل عمده برای استفاده از مبدل خط تاخیری جدا كردن انعكاس ها از پالس های محرك در ماده نازك مورد اندازه گیری هست . به عنوان یك موج بر ، خط تاخیری همچنین می تواند امواج را به قطعه ای كه بسیار داغ است بفرستد تا اندازه گیری بوسیله مبدل تماسی حساس به گرما انجام شود . خط تاخیری را می توان طوری شكل داد كه به راحتی با سطوح منحنی و فضاهای محدود كوپل شود . زمان بندی انعكاس ها در كاربردهای خط تاخیری ممكن است یكی ازاین دوحالت باشد .انتهای خط تاخیری به ابتدای انعكاس دیواره پشتی یا بین انعكاس های موفق دیواره . این نوع زمان سنجی دقت اندازه گیری مواد نازك را بهبود می بخشد و یا دقت اندازه گیری بیشتر از روش تماسی برای كاربردهای ویژه است .

    مبدل شناور :

    مبدل های شناور یك ستون آب را برای انتقال انرژی صوتی به داخل قطعه بكار می برند . آنها را می توان بكار برد برای اندازه گیری آنلاین تولیدات متحرك ، برای اسكن و یا اندازه گیری چرخشی ، یا بهینه سازی در شعاع های تیز و شیارها . نوع زمان سنجی مشابه نوع تاخیر خطی است .

    مبدل دو جزئی :

    مبدل های دو جزئی اصولا برای اندازه گیری سطوح زبر و خشن مورد استفاده قرار می گیرند .در آنها مبدل فرستنده و گیرنده جدا از هم هستند كه هر دو روی یك خط تاخیری سوار شده اند در یك زاویه متغییر برای تمركز انرژی یك فاصله انتخاب شده در زیر سطح قطعه . همچنین دقت عمل این نوع كمتر از انواع دیگر است . آنها فقط برای كاربردهای زبر و خشن طراحی شده اند.

    نتیجه گیری : برای هر كاربرد ضخامت سنج ماوراء صوت ، انتخاب سنجه و مبدل وابسته به نوع ماده ، رنج ضخامت ، دقت مورد نیاز ، دما و هندسه و دیگر شرایط خاص است .
     
  4. کاربر فوق حرفه ای

    تاریخ عضویت:
    ‏23/6/15
    ارسال ها:
    4,491
    تشکر شده:
    6,069
    امتیاز دستاورد:
    113
    جنسیت:
    مرد
    حرفه:
    Engineering Management
    گازهای محافظ در جوشكاری تيگ tig
    گازهای محافظ در جوشكاری تيگ tig
    گازهاي محافظ در جوشكاري تيگ :گازهاي محافظي كه در كپسول ها ذخيره ميشوند ميتوانند گاز خالص ( تك گاز)، مخلوطي از دوگاز ( مخلوطهاي دوتايي معروف)، يا مخلوطي از سه گاز ( مخلوطهاي سه تايي معروف) باشند.
    براي جوشكاري تيگ معمولا گازهاي خنثي مانند آرگون يا هليوم يا مخلوط آن دو براي حفاظت بكار ميروند، كه اغلب در فرآيند تيگ از گازهاي مخلوط خنثي استفاده ميشود، در بعضي موارد هم از مخلوطي كه كمي گاز فعال دارد استفاده ميشود (مانند مخلوط آرگون اكسيژن و… ).
    هنگام جوشكاري با پروسه ميگ mig گازهاي خنثي خالص در جوشكاري فولاد، قوس با مشخصات خوب فراهم نميكنند، در حاليكه گاز دي اكسيد كربنco2 خالص كه گازي فعال است، قوسي با مشخصات خوب فراهم ميكند. همچنين در فرآيند ميگ mig آرگون با مقدار كمي اكسيژن خصوصيات نفوذ را بهبود بخشيده و مهره جوش را كنترل ميكند ( ظاهر جوش خوبي ميدهد). و همچنين سوختگي كناره جوش، ناشي از عمل خيس شدگي را رفع ميكند.
    مخلوط گازهاي آرگون و دي اكسيد كربن co2)) مخلوط خوبي براي جوشكاري فولاد است. مخلوط سه تايي گازهاي آرگون، دي اكسيد كربن و اكسيژن يا مخلوطهاي سه تايي آرگون، دي اكسيد كربن وهليوم تركيبات ويژه أي هستند كه در فرآيندهاي تيگ و ميگ براي جوشكاريهاي خاص فلزاتي با فلزپايه پيچيده بكار ميروند.
    گاز آرگون:
    آرگون گازي است بي رنگ، بي بو، بي مزه و بطور نسبي در مقايسه با گازهاي بي اثر ديگر فراوانتراست. گازآرگون گاز فرعي كه درهوا وجود دارد ( هر يك ميليون فوت مكعب هوا شامل 93 هزار فوت مكعب گاز آرگون است و همچنين گاز آرگون 1.4 برابراز هوا و 10 برابراز هليوم سنگينتر است).
    يكي از روشهاي توليد گاز آرگون اين است كه ابتدا هوا را در زير فشار ودر دماي پايين به مايع تبديل ميكنند، سپس با بالا بردن (گرم كردن) دما مايع اجازه مي دهند تا مايع تبخير شود. آرگون در دماي 184 – درجه سانتيگراد ( 302 – درجه فارانهايت ) به مايع تبديل ميشود. درصد خلوص آرگون بايد تقريبا 99.99% درصد باشد. آرگون از هوا سنگين تر( چگالتر، چگالي kg/m3 1.784 كيلوگرم بر متر مكعب است و 23%از هوا سنگين تر است)، و براي همين آرگون براي حفاظت جوش در عمق شيار مناسب است و بايد در نظر داشته باشيم كه هنگاميكه ما جوش بالا سر مي دهيم نبايد از آرگون بعنوان گاز محافظ استفاده كنيم.
    آرگون در جوشكاري فلزات غير آهني ( مانند آلومينيم، منيزيم، برليم و مس) در فرآيندهاي ميگ و تيگ مانند يك محيط محافظ عمل ميكند. آرگون بخاطر اينكه ولتاژ يونيزاسيون پاييني دارد( ولتاژ يونيزاسيون اوليه 15.45 ولت ) و به آساني و سريع يونيزه ميشود، اين امكان را فراهم مي سازد كه قوس به راحتي برقرار شده و پايدار بماند و بنابراين مناسب است براي كار با جريان ac ، و همچنين گاز آرگون شروع قوس را در جريان ac آسانتر ميكند.
    گاز آرگون يك ستون قوس جمع شده ومتمركز توليد ميكند و نسبت به گازهاي ديگر قابليت هدايت حرارتش كمتر است. بدليل اينكه گاز آرگون باعث تثبيت ( ثابت نگه داشتن قوس) ميشود، در بيشتر مخلوط گازهاي محافظ از آن استفاده ميشود.
    با اينكه گاز آرگون سمي نيست اما در مكانهايي كه جريان هوا وجود ندارد يا محدود است ( مثلا تانكر ها وجاهاي بسته) باعث خفگي ميشود. همچنين كارهاي تجربي روي مقاطع نازك آلياژهاي مقاوم به حرارت نشان داده است كه آرگون براي جوشكاريهاي دستي از هليوم بهتر است.
    مخلوط آرگون با 1% يا 2% اكسيژن:
    افزودن مقدار كمي اكسيژن به آرگون دماي قوس را بالا مي برد و اكسيژن مانند يك عامل خيس كننده در حوضچه مذاب عمل ميكند، همچنين اكسيژن سياليت مذاب را بيشتر كرده و قوس را تثبيت ميكند. اكسيژن سبب كاهش كشش سطحي ميشود و نفوذ و ذوب خوبي توليد ميكند.
    در فرآيند تيگ افزايش خيلي كم اكسيژن ( كمتر از1% ) به تقويت قوس كمك ميكند. اكسيژني كه معمولا اضافه ميشود مقدارش 1% تا 2 % يا 3% تا 5% است. اكسيژن باعث ميشود كه انتقال مذاب بصورت اسپري انجام شود.
    مخلوط غني از قبيل آرگون و تا حدود 25% دي اكسيد كربن co2 با افزايش اكسيژن، انتقال فلز را بصورت گلوله اي براي جوشكاري ورقه هاي نازك و فولاد ميسازد، مخلوط آرگون +1.2% اكسيژن بكار ميرود براي فولاد زنگ نزن ( استيل ) و مخلوط آرگون + 1% اكسيژن براي جوشكاري فولاد زنگ نزن (استيل) به روش پالس و اسپري بكار ميرود و همچنين مخلوط آرگون + 2% اكسيژن براي جوشكاري با روش گلوله أي بكار ميرود.
    نكته قابل توجه در مورد اكسيژن اين است كه اكسيژن، از افزايش ضرر و زيانهاي ناشي از منگنز و سيليسيم جلوگيري ميكند.
    آرگون + هيدروژن:
    با افزودن مقدار كمي هيدروژن به آرگون، ولتاژ و حرارت قوس افزايش مي يابد. مخلوطهاي آرگون كه شامل تقريبا 5% هيدروژن هستند براي جوشكاري نيكل و آلياژهاي نيكل و براي جوشكاري مقاطع بزرگ فولادهاي زنگ نزن آوستنيتي ( استيل ) بكار ميروند.
    مخلوط آرگون با 25% هيدروژن براي جوشكاري فلزات ضخيم كه ضريب حرارتي بالايي دارند، ازقبيل مس بكار ميرود. اين مخروط يك مزيت در جوشكاري اتوماتيك با سرعت بالا، محسوب ميشود. افزايش هيدروژن نمي تواند براي جوشكاري فولادهاي كم آلياژي و ميان آلياژي و فولادهاي ساده كربني و سختي پذير بكار رود واين بخاطر خطر بروز نقص هيدروژن تردي و مشكلات ناشي از افزايش هيدروژن است. همچنين هيدروژن نبايد براي جوشكاري آلومينيم و منيزيم بكار رود.
    آرگون + نيتروژن (ازت):
    در بعضي كشورها از نيتروژن براي جوشكاري (ميگ) مس استفاده ميشود. كيفيت جوش حاصل به آن خوبي كه مي خواهيم نيست، افزودن 50% تا 75% آرگون به نيتروژن جوشي با كيفيت بالا توليد ميكند.
    آرگون +دي اكسيد كربن co2 :
    مخلوط گازهاي آرگون با دي اكسيد كربن براي جوشكاري تيگ بكار نمي رود. اما اين تركيب براي فرآيند ميگ يكي از بهترين مخلوطها، مخلوط 75% آرگون و25% دي اكسيد كربن co2 است، در حاليكه خارج از آمريكا مخلوط بهتر 80% آرگون و 20% دي اكسيد كربن است.
    اين مخلوط در فولادهاي كم كربن، ميان كربن و داراي درصدي منگنز بصورت نامحدود بكارميرود، اين مخروط همچنين درجوشكاري فولادهاي با ضخامت كم (نازك ) نيز مناسب است . در ضمن جايكه عمق نفوذ و عرض جوش ضروري نيست و ظاهر جوش مهم است از اين تركيب استفاده ميشود.
    اين تركيب همچنين باعث ميشود جرقه (پاشش) شديدا كاهش يابد. و در جوشكاري توپودري اين تركيب بطور موفق بكار ميرود.
    آرگون + هليوم:
    در فرآيند تيگ براي جوشكاري فلزات غيرآهني ( مس، آلومينيم و…) زمانيكه نفوذ زياد وقوس آرام هر دو مورد نظر باشد، استفاده ميشود. افزايش 75% تا50% هليوم ولتاژ و حرارت قوس را بالا مي برد.
    اين تركيب همچنين براي جوشكاري ضخامتهاي بالا در فلزات غيرآهني و براي جوشكاري بالاسر با درصد هليوم بيشتر مفيد است و باعث بهبود سرعت و كيفيت جوش در جوشكاري ac آلومينيم ميشود. مخلوط 25% آرگون + 75% هليوم براي فرآيند تيگ با سيم پركننده گرم بكار ميرود. همچنين مخلوط آرگون +هليوم براي جوشكاري فلزات غير آهني در فرآيند ميگ بكار ميرود.
    دي اكسيد كربن co2 :
    اين محصول فرعي بوسيله فرآيندهاي صنعتي از قبيل آمونياك ( تبديل به آهك در اجاق آهك ) از سوختن سوختها، ( نفت يا كك ) در اكسيژن هوا، يا از تخمير مداوم و تدريجي الكل ساخته ميشود. Co2 دي اكسيد كربن گازي است غير سمي، غير قابل اشتعال و سودمند براي كاهش مشكلات جرقه، همچنين گاز دي اكسيد كربن قبل از بسته بندي تميز، تصفيه و خشك ميشود و سپس در سيلندرهاي استيل كه محتوي تقريبا 35 كيلو گرم مايع دي اكسيد كربن هستند، ذخيره ميشود ويك نوع المنت گرم كننده الكتريكي مستقيما در راه خروج گاز دي اكسيد كربن قرار مي دهند. همچنين گاز دي اكسيد كربن تركيبي است از 27% كربن و 73% اكسيژن كه از پيوند دو اتم اكسيژن ويك اتم كربن بوجود آمده است.
    گازدي اكسيد كربن در دما وفشار معمولي هوا، گازي بيرنگ، غير سمي و نميسوزد. همچنين co2 كمي بوي زننده و اندكي هم ترش مزه است. آن در حدود 1.5 برابر سنگين تر از هوا است و در فضاي محدود مانند مخازن جاي هوا را مي گيرد و باعث خفگي جوشكار ميشود. در دماي بالا گاز دي اكسيد كربن به اكسيژن و كربن تجزيه ميشود. در جوشكاريهاي قوسي 20% تا 30% از اين گاز به اكسيژن و كربن تجزيه ميشود.
    بايد توجه داشت كه گاز دي اكسيد كربن خالص از گازهاي محافظ ديگر ارزانتر است، و ميتواند مانند گاز محافظ براي جوشكاري فولادهاي تا 4% كربن و فولادهاي كم آلياژي بكار رود. در جوشكاري با گاز محافظ دي اكسيد كربن، دي اكسيد كربن بطور اختصاصي با اكسيژن تركيب ميشود. همانطور كه دي اكسيد كربن سطح قوس را ترك ميكند، آن دوباره به سرعت با اكسيژن تركيب ميشود.
    خلوص دي اكسيد كربن ميتواند نسبت به فرآيند ساخت، تغييرات قابل توجهي داشته باشد. در دي اكسيد كربن نرخ قطرات نسبت به آرگون خالص كمتر است، ولتاژ قوس بالاست و مقدار اوليه ولتاژ براي انتقال اسپري نسبت به آرگون خيلي بالاتر است. نيروي انتقال قطرات كه در سراسر قوس منتقل ميشوند، نسبت به آرگون +اكسيژن كمتر است و بنابر اين قوس آرام نيست و كمي جرقه ( پاشش ) دارد وحالت قوس نيز نسبت به آرگون + اكسيژن خيلي بحراني است.
    هنگام استفاده از دي اكسيد كربن در انتقال اسپري، يك نرخ بالا از رسوب فلز و خواص هيدروژني پايين بدست مي آيد.استفاده از دي اكسيد كربن روشي است كه بيشتر براي جوشكاريهاي تكراري پيشنهاد ميشود. همچنين اين روش در بعضي زمينه ها با فرآيند قوس دستي الكترود كه پودر آهن درآن بكاررفته رقابت ميكند. در اين روش فولادهاي تا ضخامت 75 م م ميتواند با عملكرد كاملا اتوماتيك جوشكاري شود.
    در قوس دي اكسيد كربن مقداري كربن بطور تصادفي بوجود مي آيد، همچنين در بعضي رسوبها به سبب وجود كاربيد كرم در طول مرز دانه ها و افزايش مقدار كربن در جوش، مقاومت به خوردگي كاهش مي يابد. در جوشكاري با گاز دي اكسيد كربن، نتيجه جوشهاي چند پاسه كاهش مقاومت به خوردگي است، اما با سيم پركننده تثبيت شده و انتقال گلوله أي در مقاطع نازكتر جوشهاي يك پاسه رضايتبخش و خيلي با صرفه ميتوان توليد كرد.
    آرگون + دي اكسيد كربن20% يا 5%:
    افزايش دي اكسيد كربن به آرگون براي جوشكاري فولاد عمل خيس كنندگي را بهبود مي بخشد، كشش سطح را كاهش ميدهد، و سياليت حوضچه مذاب را بيشتر ميكند. هر دو مخلوط بالا با روش اسپري و غوطه أي ميتوان با آنها جوشكاري كرد.
    هليوم :
    هليوم محصول فرعي از گاز خنثي صنعتي است. وزن آن 7/1 وزن هوا است ( هليوم داراي چگالي 0.178 كيلوگرم برمتر مكعب و ولتاژ24.58 ). هليوم گازي بيرنگ، بي بو، بي مزه و غير سمي و داراي ضريب هدايت حرارتي بالا مي باشد.
     
  5. کاربر فوق حرفه ای

    تاریخ عضویت:
    ‏23/6/15
    ارسال ها:
    4,491
    تشکر شده:
    6,069
    امتیاز دستاورد:
    113
    جنسیت:
    مرد
    حرفه:
    Engineering Management
    بررسي ساختار و عملكرد آلياژهاي حافظه دار در پزشكي
    تاريخچه :
    در سال 1932 مشاهدات ثبت شده درباره پديده حافظه داري شكلي توسط Change و Read انجام شد. آنها وارون پذيري حافظه شكلي را در AuCd از طريق مطالعات فلز شناسي و تغييرات مقاومت آلياژ ، بررسي كردند
    در سال 1956 مشاهدات و نتايج تحقيقات مربوط به تز دكتراي Horbojen در موضوع اثر حافظه دار در آلياژCu-Zn منتشر شد. . در سال 1962 Buhler و همكارانش ،به بررسي پديده حافظه داري شكلي در آلياژ تيتانيم و نيكل كه داراي اتمهاي برابر مي باشند پرداختند. در اين هنگام تحقيق درباره متالورژي و كاربردهاي عملي اوليه آن به طور جدي آغاز شد.
    در سال 1967 در كنفرانس Nol ،Buhler و همكارانش تحقيقات گسترده خود را بر روي Nitionol و كاربردهاي تجاري فراوان در صنايع ارائه دادند . از جمله كاربردهاي مطرح شده ساخت كوپلينگ توسط شركت Raychem براي اتصال لوله هاي هيدروليكي مي باشد. كه در صنايع هوايي و نيروي دريايي ايالات متحده و همچنين در حوزه هاي نفتي درياي شمال مورد استفاده قرار گرفت.
    در سال 1980 ميلادي Micheal و Hawt با انتشار مقاله اي از نتايج تحقيقات خودشان بر روي برنج آنرا به عنوان ماده جديد حافظه دار معرفي كردند.

    مقدمه :
    در پديده حافظه داري، نمونه در حالت كاملاً مارتنزيتي به مقدار معيني تغيير فرم داده مي شود سپس با گرم كردن نمونه و برگشت آن به حالت آستيني، شكل نمونه نيز به حالت اول خود بر گردد .

    شكل (1) سيكل حرارتي مكانيكي توصيف كننده پديده حافظه داري شكلي
    شكل(1) چگونگي پديده حافظه داري شكل را با تبديل دو فاز آستنيت و مارتنزيت به يكديگر نشان مي دهد.
    بررسي بر روي تغيير حالت متالورژيكي نمونه جامد ، تغيير آرايش اتم ها بدون هيچگونه تغييري در تركيب شيميايي فاز زمينه را نشان مي دهد. اين تغيير آرايش منجر به ايجاد ساختار كريستالي فاز جديد و پايدار مي شود. پيشرفت تغيير حالت بدون نياز به حركت و جابجايي اتمها به صورت مجزا ، را مي توان مستقل از زمان دانست و به همين دليل مي توان وابستگي دما را به عنوان تنها عامل پيشرفت اين تغيير نشان داد.
    1- تغيير حالت هاي مارتنزيتي و پديده حافظه دار شدن:
    تغيير حالت متالورژيكي جامدات از دو طريقه زير امكان پذير است .
    1) حركت و جابجايي اتم ها وابسته به درجه حرارت و زمان با تغيير در تركيب شيميايي فاز جديد نسبت به زمينه قبلي.
    2) تغيير آرايش اتمي به صورت هماهنگ وابسته به دما و بدون وابستگي به زمان و هيچگونه تغييري در تركيب شيميايي فاز جديد نسبت به زمينه قبلي .
    تغيير حالت هاي مارتنزيتي به طريقه دوم مرتبط است و داراي مشخصات زير است:
    1) تغيير مكان به صورت شبه برشي مي باشد و در آن اتم ها به صورت هماهنگ و گروهي جابجا مي شود.
    2) ديفوزيون اتمي در آن اتفاق نمي افتد.
    رفتار حافظه دار شدن كاملاً به مشخصه اول مرتبط بوده و نظم اتم هاي آلياژ نبايد به هم بخورد.
    2- كريستالوگرافي مارتنزيتي:
    تغيير حالت تبديل آستنيت به مارتنزيت از لحاظ كريستالوگرافي در سه مرحله قابل بررسي است .
    1- تغيير فرم شبكه اي
    2- برش ناهمگن
    3- دوران شبكه اي
    فرآيند تبديل آستنيت به مارتنزيت در مرحله تغيير فرم شبكه اي در شكل 2 نشان داده شده است . در اين مرحله اتم ها با جابه جايي جزئي و هماهنگ، پيشروي فصل مشترك از هر لايه اتمي را موجب مي شوند.

    بايد توجه داشت پديده حافظه داري بدون تغيير حجم و تغيير شكل امكان پذير بوده و برش ناهمگن توجيه كننده اين مطالب مي باشد.
    برش ناهمگن در مارتنزيت به دو طريق امكان پذير است :
    1) مكانيزيم لغزش يافتن صفحات اتمي
    2) مكانيزيم تشكيل دوقلويي ها

    تصاوير نشان داده شده چگونگي انطباق فاز مارتنزيت بر فاز آستنيت را در هنگام جابجايي جزيي و گروهي اتمها با حفظ شبكه كريستالي نشان مي دهد.
    بايد توجه داشت كه لغزش صفحات اتمي به علت شكسته شدن باند هاي اتمي بعنوان مكانيزيم تغيير فرم پلاستيك دائم محسوب مي شود، در صورتي كه در مكانيزيم دو قلويي به علت انرژي پايين مرز دوقلويي و برخورداري از تحرك و لغزندگي نسبي تغيير فرم غير دائم است. در آلياژهاي حافظه دار ، كرنش هاي ناشي از تغيير حالت در اثر تشكيل يك جفت از دوقلويي هاي دو طرف مرز ذخيره سازي مي شوند و براي برگشت پذيري از آن استفاده مي شود.

    شكل 4) مرز دوقلويي را نمايش مي دهد و هر يك از دوقلويي هاي دو طرف مرز دوقلويي يك وا ريانت را شامل مي شود. در صورت وارد كردن تنش برشي به مرز دو قلويي باعث حركت يكي از واريانت ها شده و واريانت ديگري حذف مي شود.(شكل 4 ،B) اين روند مي تواند تا تبديل تمامي واريانت به يك واريانت واحد ادامه يابد(شكل 4، C) .
    بررسي پديده حافظه داري در تك كريستال آستنيت در شكل 5 نمايش داده شده است.

    مرحله اول همانطور كه از شكل پيداست بعد از سرد كردن كريستال در زير دماي Mf واريانت هاي A و B و C و D تشكيل مي شوند مرحله دوم با وارد كردن تنش به كريستال ، واريانتها شروع به حركت و حذف شدن مي كنند تا واريانت واحد A تشكيل گردد. حين تشكيل واريانت واحد A كرنش هايي در جهت واريانتA ذخيره مي شود. مرحله سوم مربوط به حرارت دادن كريستال نمونه براي تبديل مارتنزيت به آستينت مي باشد از آنجاييكه كرنش ها تنها در جهت واريانت A ذخيره شده اند، پس تنها مسير براي برگشت پذيري، واريانت A مي باشد و نمونه به شكل اوليه خود باز مي گردد.
    3- رفتار ترمومكانيكي:
    آلياژ هاي حافظه دار در درجه حرارت هاي مختلف داراي خصوصيات مكانيكي بسياري مي باشند در شكل 6 منحني هاي ساده تنش - كرنش براي آلياژ تيتانيم- نيكل مشاهده مي شود. آلياژ در دماهاي پايين ، متوسط و بالاي دماي استحاله مورد آزمايش قرار گرفته است. تغيير شكل در مارتنزيت با چند در صد كرنش و تنش فشاري نسبتاً كم ديده مي شود . در حاليكه آستنيت در درجه حرارت بالا نياز به تنش نسبتا زيادي براي تغيير شكل دارد. خط چين روي منحني مارتنزيت نمايانگر برگشت پذيري آلياژ بعد از برداشتن تنش وارد شده بعد از گرم كردن نمونه و تبديل به فاز آستنيت مي باشد ولي چنانچه كه مشاهده مي شود در منحني مربوط به آستينت با برداشتن تنش و گرم كردن نمونه امكان برگشت پذيري وجود ندارد.

    4- خاصيت ارتجاعي كاذب:
    خصوصيت جالب توجه درباره منحني تنش - كرنش درقسمت منحني C ديده مي شود.به طوري كه پس از حرارت دادن نمونه كمي بالاتر از درجه حرارت انتقال ، در درجه حرارت بالاي Af به نمونه در فاز مارتنزيت تنش وارد مي شود. با افزايش مقدار تنش ، تغيير شكل نيز به صورت يكنواخت افزايش مي يابد (منحني AB). در اين هنگام رفتار تغيير شكل و تنش پايداري مشاهده مي شود با كاهش تنش( منحني (CD مارتنزيت به آستينت تبديل مي شود بايد توجه داشت كه برگشت پذيري انجام شده به خاطر تغيير حرارت نمونه نمي باشد و دليل آن كاهش فشار است. اين پديده را كه موجب مي شود آلياژ خاصيت كشساني نامحدود پيدا كند به عنوان خاصيت ارتجاعي كاذب ناميده مي شود.
    5- اثر حافظه دار يك طرفه و دو طرفه:
    الف )اثر حافظه دار يك طرفه :
    در صورتيكه اثر حافظه داري فقط بعد از تغيير شكل در حالت مارتنزيتي و سپس در سيكل گرم كردن مشاهده شود به آن اثر حافظه يك طرفه گفته مي شود. اين بدان معني است كه در اين حالت تغيير شكل ايجاد شده ، فقط با گرم كردن به حالت اوليه قبل از تغيير شكل باز مي گردد و چنانچه جسم را دوباره سرد كنيم تغييري در شكل آن حاصل نمي شود اين خصوصيت در شكل شماره 7 نمايش داده شده است.

    همانطور كه در تصوير مشاهده مي شود ابتدا فنر در دماي Mf به مقدار معيني تغيير فرم داده مي شود به صورتيكه تغيير فرم دائمي در آن باقي بماند حال اگر فنر تغيير فرم داده شده را تا دماي Af حرارت دهيم مجدداً به شكل اوليه خود بر مي گردد و در سيكل سرد شدن تا دماي Mf هيچگونه تغيير شكلي در فنـــر مشاهده نمي شود. .

    ب)اثر حافظه دار دو طرفه :
    برگشت پذيري به حالت اوليه خود در اثر سرد و گرم كردن آلياژ هاي حافظه دار دو طرفه در بازه معيني از دما امكان پذير است . در شكل 8 يك فنر با اثر حافظه دار دو طرفه به صورت باز شده در حالت آستيني و شكل جمع شده در حالت مارتنزيتي نشان داده شده است.

    همانطور كه مشاهده مي شود اگر فنر گرم شود باز شده و در سيكل سرد شدن مجدداً به شكل جمع شده در مي آيد.
    بايد توجه داشت كه آلياژ هاي حافظه دار براي اينكه اثر حافظه دار دو طرفه از خود نشان دهند نياز به انجام عمليات ترمومكانيكي خاصي بر روي آنها مي باشد.
    6- ساخت آلياژ هاي حافظه دار :
    روش هاي اصلي ساخت آلياژ هاي حافظه دار در دو گروه عمده قابل بررسي است:
    الف) ساخت آلياژ به طريقه ذوب و ريخته گري با استفاده از كوره هاي القايي و كوره هاي مقاومتي
    ب) ساخت آلياژ به طريقه متالورژي پودر
    براي توليد آلياژ هاي حافظه دار درتناژهاي بالا و تجارتي ، از روش ذوب و ريخته گري استفاده مي شود.

    7-كاربرد آلياژهاي حافظه دار درمهندسي پزشكي:
    كاربرد پزشكي آلياژ هاي حافظه دار به عنوان يك عملگر با اثر باقيمانده در داخل بدن قابل بررسي است آلياژي كه در بدن افراد براي بهبود رفتار باليني اعضاي آنها بكار گرفته شده است نبايد مولد هيچ گونه حساسيتي باشد علاوه بر آن آلياژ بكارگرفته شده نبايد به صورت ذراتي از يون آن ماده وارد خون شخص گيرنده اين گونه آلياژها شود.
    جنبه هاي متعددي شامل شاخص هاي مزاجي افراد همچون سن ، قواي بدن و سلامتي و خصوصيات شيميايي مواد همانند خوردگي ، تخلخل پذيري سطح ، تأثيرات سمي و عناصر موجود در مواد به منظور پذيرش مواد مذكور در بدن افراد بايد مورد بررسي قرار گيرند.
    تحقيقات متعددي در مورد توليد و بكارگيري آلياژهاي حافظه دار با كاربرد پزشكي با پايه عنصري Ni-Ti انجام پذيرفته است . اين تحقيقات نشان مي دهد كه آلياژNi-Ti در كاربرد و استفاده، نسبت به بقيه آلياژها از موقعيت خوبي برخوردار است.
    تحليل خواص آلياژ Ni-Ti با بررسي خواص جداگانه نيكل و تيتانيم امكان پذير است .
    نيكل رنگ سفيد نقره اي براق دارد و فلزي است سمي ، شكننده كه از قابليت پوليش خوبي برخوردار است اين فلز جز ء فلزات غير آهني سنگين با جرم مخصوKg/dm3 9/8 و نقطه ذوب 1455 مي باشد و در مقابل خوردگي بسيار مقاوم بوده و به وسيله آهن ربا جذب مي شود. همچنين در مقابل حرارت و ضربه مقاومت خوبي نشان مي دهد موارد استفاده آن شامل پوشش محافظ در آبكاري فلزات ، توليد فولادهاي آلياژي و غيره مي باشد.
    تيتانيم فلزي است نقره فام مايل به خاكستري و جزء فلزات غير آهني سبك است و جرم مخصوص آنKg/dm3 5/4 و نقطه ذوب آن 1670 مي باشد. مقاومت در مقابل خوردگي و سايش و استحكام زياد آن موجب كاربرد در ساخت قطعات هواپيما ، سفينه فضايي ، لوازم نظامي و جراحي شده است. آلياژهاي تيتانيم دار فلز اصلي ساختمان هواپيماي مافوق صوت را تشكيل مي دهد . تيتانيوم بر خلاف نيكل در پزشكي بسيار مؤثر عمل مي كند ، علاوه بر اين با توجه به خواص بسيار خوب مكانيكي براي اصلاح دندان هاي كج و همچنين ترميم استخوان هاي آسيب ديده كاربرد فراوان دارد.
    بررسي تحقيقات خواص باليني آلياژ Ni-Ti چگونگي كنترل مقاومت در مقابل خوردگي و عوامل خارجي مؤثر بر اين آلياژ را نشان مي دهد.

    8-موارد استفاده پزشكي از آلياژ Ni-Ti:
    الف) كاربردهاي مربوط به قلب و عروق
    فيلتر سيمون نسل جديدي از وسايل استفاده شده براي جلوگيري از انسداد جريان خون مي باشد افرادي كه قادر به استفاده از داروهاي ضد انعقاد خون نمي باشند، استفاده كننده هاي اصلي اين فيلتر مي باشند. هدف استفاده از اين وسيله تصفيه خون داخل رگ مي باشد و فيلتر سيمون كمك مي كند لخته هاي بوجود آمده در خون حل شود.
    اما نصب فيلتر در داخل بدن اشخاص با به كار گيري از تأثيرات آلياژهاي حافظه دار امكان پذير است براي اين منظور فيلتر رابا تغيير شكل برروي سوند قرار مي دهند.جريان محلول نمكي در داخل سوند موجب تثبيت دماي فيلتر با درجه حرارت معمولی مي شود و زماني كه فيلتر در محل تعيين شده قرار گرفت با توقف جريان محلول نمكي در داخل سوند درجه حرارت بالا مي رود و فيلتر تغيير شكل داده شده به شكل اصلي (اوليه) خود بر مي گردد در اين زمان فيلتر از نوك سوند نيز جدا شده است.

    مسدودكننده سوراخ ديواره دهليزي: از اين وسيله براي مسدود كردن سوراخ ديواره دهليزي كه بين دو دهليز چپ و راست ايجاد مي شود استفاده مي گردد.

    بايد توجه داشت وجود اين سوراخ غير عادي است و اميد ادامه زندگي را براي افراد كاهش مي دهد در روش جراحي معمول ، رفع اين عيب مستلزم شكافتن سينه بيماروسپس عمل بخيه کردن سوراخ صورت مي گيرد ، كه به طور طبيعي خطرات ناشي از عمل جراحي و همچنين امكان بروز حوادث غير منتظره در حين جراحي اجتناب ناپذير بوده و راه حل آن استفاده از اثر آلياژهاي حافظه دار مي باشد. اين وسيله از سيم هايي با خاصيت حافظه داري و فيلم ضد آب كه روي آن نصب شده است، تشكيل مي شود. براي نصب اين وسيله در داخل قلب ابتدا نيمه اول آن وارد بطن چپ شده وبه شكل اوليه خود بر مي گردد و در ادامه نيمه دوم كه در بطن راست قرار مي گيرد تغيير شكل يافته ، به شكل اوليه خود بر مي گردد. در انتها هر دو نيمه به ديواره بطني متصل شده اند . به طوري كه از ورود جريان خون از دو بطن به يكديگر جلوگيري مي شود.

    استنت هاي باز شونده خودكار نيز از جمله وسايل مهمي است كه در حفظ قطر داخلي رگ هاي تنگ شده و كاهش قطر و بسته شدن آنها كاربرد دارد . استنت ها به شكل استوانه هاي توري ساخته مي شوند و متناسب بانوع و محل كاربرد داراي اقطار متفاوتي مي باشند(شكل 12) .

    از جمله محل هاي مورد استفاده از استنت ها سرخرگ ، سياهرگ، رگ هاي خوني ،مجاري ، صفراوي و مري مي باشد. براي نصب در داخل عروق ابتدا فاز مارتنزيتي از شكل اصلي به حالت متراكم شده تبديل و پس از قرار دادن در محل مورد نظر به شكل خود بر مي گردد.
    ب) كاربردهاي ارتوپدي
    از آلياژهاي حافظه دار (SMA) به عنوان فضا گير يا spacer بين مهره هاي ستون فقرات در حين عمل جراحي استفاده مي شود كه موجب استحكام ما بين دو مهره در حين بهبودي بعد از تغيير شكل ايجاد شده در جراحي اسكوليدز مي شود .در شكل 13B- سمت چپ مهره تغيير شكل يافته در فاز مارتنزيتي است كه پس از جايگزيني در محل مورد نظر به حالت سمت راستي (شكل اوليه ) بر مي گردد.

    ترميم و بهبود شكستگي استخوان از ديگر كاربردهاي ارتوپدي آلياژ هاي حافظه دار مي باشد. انواع مختلفي از بست هاي با خاصيت حافظه داري در ترميم شكستگي يا ترك استخوان ساخته شده است. بست ها به صورت باز شده در محل شكستگي يا ترك معمولاً پيچ شوند. با كمك گرما بست ها به گونه اي تغيير شكل مي يابند كه دو طرف شكستگي يا ترك را با هم يكي كرده و مي فشرند. گرماي ايجاد شده را مي توان به كمك يك وسيله خارجي به آلياژ منتقل كرد. نيروي ايجاد شده در اثر تغيير شكل آلياژ به بهبود سريعتر شكستگي يا ترك مي انجامد (شكل 14 و 15) .

    عموماً از اين بست ها در مواقعي استفاده مي شود كه محل شكستگي يا ترك را نتوان گچ گرفت، مانند نواحي صورت شامل، بيني ، فك و حفره چشم از جمله محل هاي مورد كاربرد مي باشند.
    از ديگر كاربردهاي ارتوپدي اثرات آلياژ هاي حافظه دار در فيزيوتراپي عضلات ضعيف مي باشد . تصوير 16 دستكشي را نشان مي دهد كه سيم هايي باخاصيت حافظه داري بر روي ناحيه انگشتان دستكش واقع شده است. كه موجب تقويت حركت عضلات و برقراري دامنه مناسب حركات مفصلي با استفاده از خاصيت حافظه داري سيم هاي دستكش استفاده مي شود به طوريكه با گرم كردن سيم طول سيم ها كوتاه شده و انگشتان به داخل خم مي شوند و با سردكردن طول سيم ها زياد شده و انگشتان كاملا‌ً كشيده مي شوند . اين پديده براي به كار انداختن مفاصل نيمه ثابت استفاده مي شود.

    ج) كاربرد آلياژ هاي حافظه دار در وسايل جراحي
    در راستاي توليد وسيع ابزارهاي جراحي در سال هاي اخير ابزارهاي جراحي حافظه دار قابل توجهي توليد شده است كه به شرح تعدادي از آنها پرداخته مي شود.
    1- سبد حافظه دار براي خارج كردن سنگ هاي مثانه و صفراوي مورد استفاده قرار مي گيرد. مراحل نصب آن شبيه فيلتر سايمون مـي باشد كه در شكل 17 آورده شده است.

    كاربرد پمپ بالوني داخل آئورت شكل 18 براي جلوگيري از مسدود شدن رگ هاي خوني در هنگام آنژيوپلاستي مي شود اين وسيله داري تيوب با اثر حافظه داري است وعملكرد آن با مواد پلي مري كه خاصيت ارتجاعي دارند قابل مقايسه است.
    شكل 19 انواع انبرك هاي شامل انبرك هاي قيچي دار و پنس مورد استفاده در لاپاراسكوپي را نشان مي دهد. دقت و نرمي در حركت از جمله خصوصيات اين ابزار مي باشد.

    9-نتيجه گيري:
    1-تغيير حالت مارتنزيتي به طريقه دوم تغيير حالت متالورژيكي جامدات مربوط بوده و در آن تغيير آرايش اتمي بدون هيچ وابستگي به زمان و تغييري در تركيب شيميايي فاز جديد، به صورت هماهنگ و وابسته به دما انجام مي گيرد.
    2-رفتار حافظه دار شدن با تغيير مكان به صورت شبه برشي امكان پذير مي باشد كه در آن اتم ها به صورت هماهنگ و گروهي جابجا مي شوند.
    3-مكانيزم دوقلويي در برش ناهمگن توجيه كننده چگونگي حافظه دار شدن آلياژنمونه بدون تغيير درحجم نمونه اوليه است.
    4-در رفتار ارتجاعي كاذب، آليا‍ژ خاصيت كشساني نامحدودي پيدا مي كند.
    5-اثر حافظه داري به دو صورت يك طرفه و دو طرفه در آلياژهاي حافظه دار قابل بررسي است.
    6- آلياژهاي حافظه دار به دو روش 1-روش ذوب و ريخته گري 2- متالورژي پودر ساخته مي شوند.
    7-آلياژهاي NiTi به دليل داشتن ويژگي هايي همچون مقاومت در مقابل خوردگي ،سازگاري زيستي بالا، قابليت توليد در اندازه هاي خيلي كوچك ، خاصيت ارتجاعي بالا و توليد نيرو در تجهيزات مهندسي پزشكي كاربرد فراوان دارند.